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Auerbach systems

Definition
An Auerbach system of size κ in a Banach space X is a
sequence (uα , gα)α<κ such that:
• uα ∈ X, ‖uα‖ = 1 for everyα < κ

• gα ∈ X∗, ‖gα‖ = 1 for everyα < κ

• gα(uβ) = δα,β for allα,β < κ
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Motivation

Theorem (Hájek, Kania, Russo)

Assume CH. Then there is an equivalent renorming of c0(ω1)
without uncountable Auerbach systems.

Is it true in ZFC or is the negation consistent?
We will show that the statement is true provided that either of
the following holds:
• c f (2ω) = ω1

• There is a strongly Lusin set, i.e. an uncountable set L ⊆ R
such that for any sequence (λα1 , . . . , λαn)α<ω1 of pairwise
disjoint n-tuples of elements of L (without repetitions) and
any meager set M ⊆ Rn the intersection

M ∩ {(λα1 , . . . , λαn) : α < ω1}

is countable.
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Construction of the norm

For x ∈ c0(ω1) we will put

‖x‖ = sup
α<ω1

|ϕα(x)|.

Forα <ω1 fix an injection eα : α + 1→ ω so that eα(α) = 0
and eα =∗ eβ|α+1 forα < β <ω1.
Fixω1 pairwise distinct real numbers (λα)α<ω1 from some
small interval (0,ε).
We defineϕα by its `1-representation

ϕα(ξ) = λ
eα(ξ)
α for ξ ≤ α,

ϕα(ξ) = 0 forα < ξ <ω1.
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Hájek-Kania-Russo results

Assume that there is an Auerbach system (uα , gα)α<ω1 in the
space (c0(ω1), ‖ · ‖). Then gα is a finite linear combinations of
(ϕα)α<ω1 , say

gα =
N

∑
i=1

cαi ϕβαi .

Furthermore, we may assume that either:
(1): {βα1 , . . . ,βαN} < {β

γ
1 , . . . ,βγN} forα < γ <ω1

or
(2): βα1 = δ for everyα < ω1 and {βα2 , . . . ,βαN} < {β

γ
2 , . . . ,βγN}

forα < γ < ω1.
For our discussion today, focus on (1).
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Basic idea

The very general idea is as follows: For everyα ∈ (0,ω1) we
have

gα(u0) = 0.

But that means that for uncountably manyαs

N

∑
i=1

cαi
(

∑
ξ<α

λ
eβαi

(ξ)

βαi
u0(ξ)

)
= 0.

But surely we may pick uncountably many numbers λα in a
way so that some of them don’t satisfy that equation. Right?
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The devil is in the details

In fact we work with N equations,

gα(u1) = gα(u2) = . . . = gα(uN) = 0.

Let A = supp(u1) ∪ . . . ∪ supp(uN) and find fi : A→ N such
that eβαi |A = fi for uncountably manyαs.
Write those equations as

∑ξ∈A λ
f1(ξ)
βα1

u1(ξ) ∑ξ∈A λ
f2(ξ)
βα2

u1(ξ) . . . ∑ξ∈A λ
fN(ξ)
βαN

u1(ξ)

∑ξ∈A λ
f1(ξ)
βα1

u2(ξ) ∑ξ∈A λ
f2(ξ)
βα2

u2(ξ) . . . ∑ξ∈A λ
fN(ξ)
βαN

u2(ξ)

. . .

∑ξ∈A λ
f1(ξ)
βα1

uN(ξ) ∑ξ∈A λ
f2(ξ)
βα2

uN(ξ) . . . ∑ξ∈A λ
fN(ξ)
βαN

uN(ξ)




cα1
cα2
. . .
cαN



=


0
0

. . .
0

 .
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Someone stop these indices!

Consider h : (0,ε)N → R given by

h(x1, x2, . . . , xN) = det


∑ξ∈A x f1(ξ)

1 u1(ξ) . . . ∑ξ∈A x fN(ξ)
N u1(ξ)

∑ξ∈A x f1(ξ)
1 u2(ξ) . . . ∑ξ∈A x fN(ξ)

N u2(ξ)
. . .

∑ξ∈A x f1(ξ)
1 uN(ξ) . . . ∑ξ∈A x fN(ξ)

N uN(ξ)



Let us denote by ψx
i , where x ∈ (0, δ) and i = 1, . . . , N, the

functional on c0(ω1) given by its `1(ω1) representation:
ψx

i (ξ) = x fi(ξ) for ξ ∈ A, ψx
i (ξ) = 0 otherwise.

Clearly

h(x1, x2, . . . , xN) = det


ψx1

1 (u1) ψx2
2 (u1) . . . ψxN

N (u1)
ψx1

1 (u2) ψx2
2 (u2) . . . ψxN

N (u2)
. . .

ψx1
1 (uN) ψx2

2 (uN) . . . ψxN
N (uN)
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Analytic functions...

Let us consider such determinants for small N. Start with
N = 1:

ψx1
1 (u1) = ∑

ξ∈A
x f1(ξ)

1 u1(ξ)

By the definition this is a power series with non-zero
coefficients, so there is a cofinite (in particular: comeager) set
J1 ⊆ (0,ε) such that it is non-zero for x1 ∈ J1.
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...and descriptive set theory

ψx1
1 (u1) ·ψx2

2 (u2)−ψx1
1 (u2) ·ψx2

2 (u1) = ψx2
2

(
ψx1

1 (u1)u2−ψx1
1 (u2)u1

)
.

If x1 ∈ J1, then the latter is the evaluation of a non-zero
functional ψx2

2 on a non-zero vector (as a nontrivial
combination of linearly independent vectors), so we may
repeat the argument with the power series. Therefore for every
x1 ∈ J1 there is a cofinite set K(x1) ⊆ (0,ε) such that h2 is
non-zero on (x1, x2) for x2 ∈ K(x1). By the Kuratowski-Ulam
theorem, there is a comeager set M ⊆ (0, δ)2 such that
h2(x1, x2) 6= 0 for (x1, x2) ∈ M.
Proceeding by induction we show that there is a comeager set
K ⊆ (0, δ)N such that h(x1, . . . , xn) 6= 0 for (x1, . . . , xn) ∈ K.
Therefore if {λα : α <ω1} is strongly Lusin, we may pick
(λβα1 , λβα2 , . . . , λβαN ) ∈ K.
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Holes and hopes

• Do we need extra set-theoretic assumptions?1

• Study the structure of the set
{(x1, . . . , xn) ∈ (0,ε)N : that determinant is zero}.

• Is every A ∈
(

Fin(R)⊗ Fin(R)
)
⊗ . . .⊗ Fin(R) covered by

a set of such form?
• Is there (in ZFC) a version of a strongly Lusin set for Fubini

products of Fin(R)?
• How even start a construction of a ccc forcing notion

which adds an Auerbach system?

1To solve this problem. We obviously need them to keep our jobs.
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